DiCE

Getting Started:

  • Diverse Counterfactual Explanations (DiCE) for ML

Notebooks:

  • Quick introduction to generating counterfactual explanations using DiCE
  • Estimating local and global feature importance scores using DiCE
  • Generating counterfactuals for multi-class classification and regression models
  • Regression
  • Generating counterfactual explanations with any ML model
  • Generating counterfactual explanations without access to training data
  • Advanced options to customize Counterfactual Explanations

Package:

  • dice_ml package
DiCE
  • <no title>
  • View page source

Example notebooks

Notebooks:

  • Quick introduction to generating counterfactual explanations using DiCE
    • Preliminaries: Loading a dataset and a ML model trained over it
    • Generating counterfactual examples using DiCE
    • Generating feature attributions (local and global) using DiCE
    • Working with deep learning models (TensorFlow and PyTorch)
    • More resources: What’s next?
  • Estimating local and global feature importance scores using DiCE
    • Preliminaries: Loading the data and ML model
    • Local feature importance
    • Global importance
    • Convert the counterfactual output to json
    • Convert the json output to a counterfactual object
  • Generating counterfactuals for multi-class classification and regression models
    • Multiclass Classification
  • Regression
  • Generating counterfactual explanations with any ML model
    • 1. Independent random sampling of features
    • 2. Genetic Algorithm
    • 3. Querying a KD Tree
  • Generating counterfactual explanations without access to training data
    • Defining meta data
    • Generate diverse counterfactuals
    • Generate diverse counterfactuals
  • Advanced options to customize Counterfactual Explanations
    • Loading dataset
    • 1. Loading a custom ML model
    • Generate diverse counterfactuals
    • 2. Changing feature weights
    • 3. Trading off between proximity and diversity goals
Previous Next

© Copyright 2020, Ramaravind, Amit, Chenhao.

Built with Sphinx using a theme provided by Read the Docs.