Source code for dice_ml.model

"""Module pointing to different implementations of Model class

The implementations contain methods to access the output or gradients of ML models trained based on different
frameworks such as Tensorflow or PyTorch.
"""
import warnings

from raiutils.exceptions import UserConfigValidationException

from dice_ml.constants import BackEndTypes, ModelTypes


[docs]class Model: """An interface class to different ML Model implementations.""" def __init__(self, model=None, model_path='', backend=BackEndTypes.Tensorflow1, model_type=ModelTypes.Classifier, func=None, kw_args=None): """Init method :param model: trained ML model. :param model_path: path to trained ML model. :param backend: "TF1" ("TF2") for TensorFLow 1.0 (2.0), "PYT" for PyTorch implementations, "sklearn" for Scikit-Learn implementations of standard DiCE (https://arxiv.org/pdf/1905.07697.pdf). For all other frameworks and implementations, provide a dictionary with "model" and "explainer" as keys, and include module and class names as values in the form module_name.class_name. For instance, if there is a model interface class "XGBoostModel" in module "xgboost_model.py" inside the subpackage dice_ml.model_interfaces, and dice interface class "DiceXGBoost" in module "dice_xgboost" inside dice_ml.explainer_interfaces, then backend parameter should be {"model": "xgboost_model.XGBoostModel", "explainer": dice_xgboost.DiceXGBoost}. :param func: function transformation required for ML model. If func is None, then func will be the identity function. :param kw_args: Dictionary of additional keyword arguments to pass to func. DiCE's data_interface is appended to the dictionary of kw_args, by default. """ if backend not in BackEndTypes.ALL: warnings.warn('{0} backend not in supported backends {1}'.format( backend, ','.join(BackEndTypes.ALL)), stacklevel=2) if model_type not in ModelTypes.ALL: raise UserConfigValidationException('{0} model type not in supported model types {1}'.format( model_type, ','.join(ModelTypes.ALL)) ) self.model_type = model_type if model is None and model_path == '': raise ValueError("should provide either a trained model or the path to a model") else: self.decide_implementation_type(model, model_path, backend, func, kw_args)
[docs] def decide_implementation_type(self, model, model_path, backend, func, kw_args): """Decides the Model implementation type.""" self.__class__ = decide(backend) self.__init__(model, model_path, backend, func, kw_args)
[docs]def decide(backend): """Decides the Model implementation type. To add new implementations of Model, add the class in model_interfaces subpackage and import-and-return the class in an elif loop as shown in the below method. """ if backend == BackEndTypes.Sklearn: # random sampling of CFs from dice_ml.model_interfaces.base_model import BaseModel return BaseModel elif backend == BackEndTypes.Tensorflow1 or backend == BackEndTypes.Tensorflow2: # Tensorflow 1 or 2 backend try: import tensorflow # noqa: F401 except ImportError: raise UserConfigValidationException("Unable to import tensorflow. Please install tensorflow") from dice_ml.model_interfaces.keras_tensorflow_model import \ KerasTensorFlowModel return KerasTensorFlowModel elif backend == BackEndTypes.Pytorch: # PyTorch backend try: import torch # noqa: F401 except ImportError: raise UserConfigValidationException("Unable to import torch. Please install torch from https://pytorch.org/") from dice_ml.model_interfaces.pytorch_model import PyTorchModel return PyTorchModel else: # all other implementations and frameworks backend_model = backend['model'] module_name, class_name = backend_model.split('.') module = __import__("dice_ml.model_interfaces." + module_name, fromlist=[class_name]) return getattr(module, class_name)