Source code for dice_ml.model_interfaces.base_model

"""Module containing a template class as an interface to ML model.
   Subclasses implement model interfaces for different ML frameworks such as TensorFlow, PyTorch OR Sklearn.
   All model interface methods are in dice_ml.model_interfaces"""

import pickle

import numpy as np

from dice_ml.constants import ModelTypes
from dice_ml.utils.exception import SystemException
from dice_ml.utils.helpers import DataTransfomer


[docs]class BaseModel: def __init__(self, model=None, model_path='', backend='', func=None, kw_args=None): """Init method :param model: trained ML Model. :param model_path: path to trained model. :param backend: ML framework. For frameworks other than TensorFlow or PyTorch, or for implementations other than standard DiCE (https://arxiv.org/pdf/1905.07697.pdf), provide both the module and class names as module_name.class_name. For instance, if there is a model interface class "SklearnModel" in module "sklearn_model.py" inside the subpackage dice_ml.model_interfaces, then backend parameter should be "sklearn_model.SklearnModel". :param func: function transformation required for ML model. If func is None, then func will be the identity function. :param kw_args: Dictionary of additional keyword arguments to pass to func. DiCE's data_interface is appended to the dictionary of kw_args, by default. """ self.model = model self.model_path = model_path self.backend = backend # calls FunctionTransformer of scikit-learn internally # (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.FunctionTransformer.html) self.transformer = DataTransfomer(func, kw_args)
[docs] def load_model(self): if self.model_path != '': with open(self.model_path, 'rb') as filehandle: self.model = pickle.load(filehandle)
[docs] def get_output(self, input_instance, model_score=True): """returns prediction probabilities for a classifier and the predicted output for a regressor. :returns: an array of output scores for a classifier, and a singleton array of predicted value for a regressor. """ input_instance = self.transformer.transform(input_instance) if model_score: if self.model_type == ModelTypes.Classifier: return self.model.predict_proba(input_instance) else: return self.model.predict(input_instance) else: return self.model.predict(input_instance)
[docs] def get_gradient(self): raise NotImplementedError
[docs] def get_num_output_nodes(self, inp_size): temp_input = np.transpose(np.array([np.random.uniform(0, 1) for i in range(inp_size)]).reshape(-1, 1)) return self.get_output(temp_input).shape[1]
[docs] def get_num_output_nodes2(self, input_instance): if self.model_type == ModelTypes.Regressor: raise SystemException('Number of output nodes not supported for regression') return self.get_output(input_instance).shape[1]