dice_ml.data_interfaces package
Submodules
dice_ml.data_interfaces.base_data_interface module
Module containing base class for data interfaces for dice-ml.
dice_ml.data_interfaces.private_data_interface module
Module containing meta data information about private data.
- class dice_ml.data_interfaces.private_data_interface.PrivateData(params)[source]
Bases:
_BaseData
A data interface for private data with meta information.
- de_normalize_data(df)[source]
De-normalizes continuous features from [0,1] range to original range.
- from_dummies(data, prefix_sep='_')[source]
Gets the original data from dummy encoded data with k levels.
- get_decimal_precisions(output_type='list')[source]
“Gets the precision of continuous features in the data.
- get_encoded_categorical_feature_indexes()[source]
Gets the column indexes categorical features after one-hot-encoding.
- get_indexes_of_features_to_vary(features_to_vary='all')[source]
Gets indexes from feature names of one-hot-encoded data.
- get_inverse_ohe_min_max_normalized_data(transformed_data)[source]
Transforms one-hot-encoded and min-max normalized data into raw user-fed data format. transformed_data should be a dataframe or an array
- get_minx_maxx(normalized=True)[source]
Gets the min/max value of features in normalized or de-normalized form.
- get_ohe_min_max_normalized_data(query_instance)[source]
Transforms query_instance into one-hot-encoded and min-max normalized data. query_instance should be a dict, a dataframe, a list, or a list of dicts
- get_valid_feature_range(feature_range_input, normalized=True)[source]
Gets the min/max value of features in normalized or de-normalized form. Assumes that all features are already encoded to numerical form such that the number of features remains the same.
# TODO needs work adhere to label encoded max and to support permitted_range for both continuous and discrete when provided in _generate_counterfactuals.
- get_valid_mads(normalized=False, display_warnings=False, return_mads=True)[source]
Computes Median Absolute Deviation of features. If they are <=0, returns a practical value instead
dice_ml.data_interfaces.public_data_interface module
Module containing all required information about the interface between raw (or transformed) public data and DiCE explainers.
- class dice_ml.data_interfaces.public_data_interface.PublicData(params)[source]
Bases:
_BaseData
A data interface for public data. This class is an interface to DiCE explainers and contains methods to transform user-fed raw data into the format a DiCE explainer requires, and vice versa.
- de_normalize_data(df)[source]
De-normalizes continuous features from [0,1] range to original range.
- from_dummies(data, prefix_sep='_')[source]
Gets the original data from dummy encoded data with k levels.
- get_decimal_precisions(output_type='list')[source]
“Gets the precision of continuous features in the data.
- get_encoded_categorical_feature_indexes()[source]
Gets the column indexes categorical features after one-hot-encoding.
- get_indexes_of_features_to_vary(features_to_vary='all')[source]
Gets indexes from feature names of one-hot-encoded data.
- get_inverse_ohe_min_max_normalized_data(transformed_data)[source]
Transforms one-hot-encoded and min-max normalized data into raw user-fed data format. transformed_data should be a dataframe or an array
- get_minx_maxx(normalized=True)[source]
Gets the min/max value of features in normalized or de-normalized form.
- get_ohe_min_max_normalized_data(query_instance)[source]
Transforms query_instance into one-hot-encoded and min-max normalized data. query_instance should be a dict, a dataframe, a list, or a list of dicts
- get_quantiles_from_training_data(quantile=0.05, normalized=False)[source]
Computes required quantile of Absolute Deviations of features.
- get_valid_feature_range(feature_range_input, normalized=True)[source]
Gets the min/max value of features in normalized or de-normalized form. Assumes that all features are already encoded to numerical form such that the number of features remains the same.
# TODO needs work adhere to label encoded max and to support permitted_range for both continuous and discrete when provided in _generate_counterfactuals.
- get_valid_mads(normalized=False, display_warnings=False, return_mads=True)[source]
Computes Median Absolute Deviation of features. If they are <=0, returns a practical value instead