Source code for dice_ml.explainer_interfaces.feasible_model_approx

# Dice Imports
# Pytorch
import torch
import torch.utils.data
from torch.nn import functional as F

from dice_ml.explainer_interfaces.explainer_base import ExplainerBase
from dice_ml.explainer_interfaces.feasible_base_vae import FeasibleBaseVAE
from dice_ml.utils.helpers import get_base_gen_cf_initialization


[docs]class FeasibleModelApprox(FeasibleBaseVAE, ExplainerBase): def __init__(self, data_interface, model_interface, **kwargs): """ :param data_interface: an interface class to data related params :param model_interface: an interface class to access trained ML model """ # initiating data related parameters ExplainerBase.__init__(self, data_interface) # Black Box ML Model to be explained self.pred_model = model_interface.model self.minx, self.maxx, self.encoded_categorical_feature_indexes, \ self.encoded_continuous_feature_indexes, self.cont_minx, self.cont_maxx, self.cont_precisions = \ self.data_interface.get_data_params_for_gradient_dice() self.data_interface.one_hot_encoded_data = self.data_interface.one_hot_encode_data(self.data_interface.data_df) # Hyperparam self.encoded_size = kwargs['encoded_size'] self.learning_rate = kwargs['lr'] self.batch_size = kwargs['batch_size'] self.validity_reg = kwargs['validity_reg'] self.margin = kwargs['margin'] self.epochs = kwargs['epochs'] self.wm1 = kwargs['wm1'] self.wm2 = kwargs['wm2'] self.wm3 = kwargs['wm3'] # Initializing parameters for the DiceModelApproxGenCF self.vae_train_dataset, self.vae_val_dataset, self.vae_test_dataset, self.normalise_weights, \ self.cf_vae, self.cf_vae_optimizer = \ get_base_gen_cf_initialization( self.data_interface, self.encoded_size, self.cont_minx, self.cont_maxx, self.margin, self.validity_reg, self.epochs, self.wm1, self.wm2, self.wm3, self.learning_rate) # Data paths self.base_model_dir = '../../../dice_ml/utils/sample_trained_models/' self.save_path = self.base_model_dir + self.data_interface.data_name + \ '-margin-' + str(self.margin) + '-validity_reg-' + str(self.validity_reg) + \ '-epoch-' + str(self.epochs) + '-' + 'ae-gen' + '.pth'
[docs] def train(self, constraint_type, constraint_variables, constraint_direction, constraint_reg, pre_trained=False): ''' :param pre_trained: Bool Variable to check whether pre trained model exists to avoid training again :param constraint_type: Binary Variable currently: (1) unary / (0) monotonic :param constraint_variables: List of List: [[Effect, Cause1, Cause2, .... ]] :param constraint_direction: -1: Negative, 1: Positive ( By default has to be one for monotonic constraints ) :param constraint_reg: Tunable Hyperparamter :return None ''' if pre_trained: self.cf_vae.load_state_dict(torch.load(self.save_path)) self.cf_vae.eval() return # TODO: Handling such dataset specific constraints in a more general way # CF Generation for only low to high income data points self.vae_train_dataset = self.vae_train_dataset[self.vae_train_dataset[:, -1] == 0, :] self.vae_val_dataset = self.vae_val_dataset[self.vae_val_dataset[:, -1] == 0, :] # Removing the outcome variable from the datasets self.vae_train_feat = self.vae_train_dataset[:, :-1] self.vae_val_feat = self.vae_val_dataset[:, :-1] for epoch in range(self.epochs): batch_num = 0 train_loss = 0.0 train_size = 0 train_dataset = torch.tensor(self.vae_train_feat).float() train_dataset = torch.utils.data.DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True) for train in enumerate(train_dataset): self.cf_vae_optimizer.zero_grad() train_x = train[1] train_y = 1.0-torch.argmax(self.pred_model(train_x), dim=1) train_size += train_x.shape[0] out = self.cf_vae(train_x, train_y) loss = self.compute_loss(out, train_x, train_y) # Unary Case if constraint_type: for const in constraint_variables: # Get the index from the feature name # Handle the categorical variable case here too const_idx = const[0] dm = out['x_pred'] mc_samples = out['mc_samples'] x_pred = dm[0] constraint_loss = F.hinge_embedding_loss( constraint_direction*(x_pred[:, const_idx] - train_x[:, const_idx]), torch.tensor(-1), 0) for j in range(1, mc_samples): x_pred = dm[j] constraint_loss += F.hinge_embedding_loss( constraint_direction*(x_pred[:, const_idx] - train_x[:, const_idx]), torch.tensor(-1), 0) constraint_loss = constraint_loss/mc_samples constraint_loss = constraint_reg*constraint_loss loss += constraint_loss print('Constraint: ', constraint_loss, torch.mean(constraint_loss)) else: # Train the regression model raise NotImplementedError( "This has not been implemented yet. If you'd like this to be implemented in the next version, " "please raise an issue at https://github.com/interpretml/DiCE/issues") loss.backward() train_loss += loss.item() self.cf_vae_optimizer.step() batch_num += 1 ret = loss/batch_num print('Train Avg Loss: ', ret, train_size) # Save the model after training every 10 epochs and at the last epoch if (epoch != 0 and (epoch % 10) == 0) or epoch == self.epochs-1: torch.save(self.cf_vae.state_dict(), self.save_path)