Skip to main content
Ctrl+K
Logo image
  • Getting Started
  • API Reference
    • interpret.glassbox
      • ExplainableBoostingClassifier
      • ExplainableBoostingRegressor
      • APLRRegressor
      • APLRClassifier
      • LogisticRegression
      • LinearRegression
      • ClassificationTree
      • RegressionTree
      • merge_ebms
    • interpret.blackbox
      • ShapKernel
      • LimeTabular
      • PartialDependence
      • MorrisSensitivity
    • interpret.greybox
      • ShapTree
    • interpret.perf
      • RegressionPerf
      • ROC
      • PR
    • interpret.data
      • ClassHistogram
      • Marginal
    • interpret.privacy
      • DPExplainableBoostingClassifier
      • DPExplainableBoostingRegressor
    • interpret.utils
      • link_func
      • inv_link
      • measure_interactions
      • purify
    • interpret.develop
      • debug_mode
    • show
    • show_link
    • set_show_addr
    • get_show_addr
    • preserve
    • shutdown_show_server
    • init_show_server
    • status_show_server
    • set_visualize_provider
    • get_visualize_provider
  • Algorithms
    • Glassbox Models
      • Explainable Boosting Machine
      • Automatic Piecewise Linear Regression (APLR)
      • Linear Model
      • Decision Tree
    • Blackbox Explainers
      • Shapley Additive Explanations
      • Local Interpretable Model-agnostic Explanations
      • Partial Dependence Plot
      • Morris Sensitivity Analysis
    • Differentially Private Models
      • Differentially Private EBMs
  • Hyperparameters
  • EBM internals
    • EBM Internals - Regression
    • EBM Internals - Binary classification
    • EBM Internals - Multiclass
  • Visualizations
  • Deployments
  • Development
    • Installation
    • Logging and Debugging
  • What the FAQ
  • Examples
    • Interpretable Classification
    • Interpretable Regression
    • Smoothing EBMs
    • Explain Blackbox Classifiers
    • Explain Blackbox Regressors
    • Merging EBMs
    • Custom Interactions
    • Differential Privacy
    • Group Importances
    • Prototype Selection
  • .ipynb

link_func

link_func#

interpret.utils.link_func(predictions, link, link_param=nan)#

Applies the link function to predictions to generate scores.

Parameters:
  • predictions – Numpy array of predictions for samples.

  • link – string containing the type of link function to use

  • link_param – Optional. numeric parameter that is specified by the link function.

Returns:

Scores converted by the link function.

previous

interpret.utils

next

inv_link

By The InterpretML Contributors

© Copyright 2023.